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Through developmental plasticity, an individual organism integrates
influences from its immediate environment with those due to the environment
of its parents. While both effects on phenotypes are well documented, their
relative impact has been little studied in natural systems, especially at the
level of gene expression. We examined this issue in four genotypes of the
annual plant Persicaria maculosa by varying two key resources—light and
soil moisture—in both generations. Transcriptomic analyses showed that the
relative effects of parent and offspring environment on gene expression (i.e.
the number of differentially expressed transcripts, DETs) varied both for the
two types of resource stress and among genotypes. For light, immediate
environment induced more DETs than parental environment for all geno-
types, although the precise proportion of parental versus immediate DETs
varied among genotypes. By contrast, the relative effect of soil moisture
varied dramatically among genotypes, from 8-fold more DETs due to parental
than immediate conditions to 10-fold fewer. These findings provide evidence
at the transcriptomic level that the relative impacts of parental and immediate
environment on the developing organism may depend on the environmental
factor and vary strongly among genotypes, providing potential for the
interplay of these developmental influences to evolve.
1. Introduction
The developing organism’s phenotype reflects not only its immediate environ-
ment but, in many cases, that of its parents. Both immediate and parental
influences have been characterized in a wide range of taxa for functional and
life-history traits (reviewed by [1,2]) and at the underlying level of gene
expression (e.g. [3–5]). Current and parental environmental effects on develop-
ment (often termed immediate and transgenerational plasticity, respectively) are
known to vary depending on the factor or stress in question, in many cases
providing specifically adaptive adjustments (reviewed by [6–9]; see [10]). More-
over, genotypes may differ in their precise patterns of phenotypic response to a
given current or parental factor [11–14]. Although numerous studies have
revealed both immediate and inherited environmental influences on the pheno-
types of developing individuals, the relative impact of these two types of
environmental influence on gene expression, their functional similarity or dis-
tinctness, and the generality of these patterns are as yet poorly understood,
in four key ways.

First, studies that test for both current and parental effects on offspring
(reviewed by [15]) seldom explicitly compare the magnitude of these two aspects
of plasticity [16,17]. Instead, parental effects on offspring development are often
presumed to be minor relative to the effects of the offspring’s immediate environ-
ment [18–20]. Although in many published cases transgenerational effects on
phenotypes are indeed subtle [16], it is not known whether they are inherently
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less pronounced than immediate effects. Indeed, several
studies have revealed stronger parent- than current-environ-
ment effects on offspring phenotypes: parent environment
influences germination behaviour in Arabidopsis thaliana more
strongly than immediate germination conditions [21,22];
maternal photoperiod in Daphnia has been shown in some
contexts to have a greater impact on an offspring individual’s
egg production strategy than its immediate photoperiod [23];
and maternal thermal environment can result in a greater
number of differentially expressed genes than the immediate
water temperature in the marine fish Gasterosteus aculeatus
[3]. Theory suggests that, for certain environmental factors, par-
ental conditions may better predict an offspring’s selective
environment, favoring the evolution of strong transgenerational
plasticity relative to immediate response to environmental
factors that affect fitness [17,19,20,24,25]. Hence the relative
impact of parental and immediate environments may differ
depending on the system and the organism’s evolved develop-
mental reliance on these alternative sources of information
about a given cue.

Second, the relative impact of immediate and transgenera-
tional effects may vary with the type of environmental factor.
In plants, for example, light and soil moisture represent criti-
cal resources for survival and growth that are patchily
distributed in natural habitats, varying from amply available
to stressfully limited [26]. As a result, plants have evolved a
robust set of transcriptional and phenotypic responses to
shade and drought stress that promote access to these
resources through changes to relevant traits (reviewed in
[2]). Modulation in gene expression patterns is a well-charac-
terized component of response to the shade cast by
neighboring plants [27,28]. Such changes frequently involve
the expression of genes directly related to shade avoidance
and tolerance, including photoreceptor gene networks [29–
31] and growth hormone regulation and response genes
[32,33]; at the trait level, well-known responses to shade
include increased leaf biomass allocation, shoot elongation,
and producing structurally thinner leaves with greater sur-
face area (reviewed in [28,34,35]). Recent studies have also
demonstrated the potential for plants that experience shade
as parents to induce these developmental traits in their off-
spring [36–38], but it is not known whether this is achieved
via the same gene expression changes.

Likewise, plants show pronounced molecular and devel-
opmental responses to limited soil moisture. Immediate
drought stress is known to affect expression of numerous
genes associated with aspects of drought tolerance, such as
cell wall thickening, osmotic adjustment and various meta-
bolic processes [39–41]. Typical developmental responses
include increased root biomass allocation [42], more extensive
root systems [26], and cuticular thickening [43]. Parental
drought is also implicated in similar effects on offspring
phenotypes [44,45]. Although immediate and parental
stress effects are thus well documented for both shade and
drought, it is not known whether their relative impact
remain consistent across these distinct stresses.

Third, it is also not known whether the relative impacts of
immediate and parental plasticity are consistent among
different genetic backgrounds in natural systems or if,
instead, variation in this relationship may be a little recog-
nized aspect of genetic variation (see [46]). If so, this raises
the intriguing possibility that patterns of developmental inte-
gration of current and inherited environmental influences
(e.g. the prioritization of one signal over the other in specific
circumstances) may be subject to adaptive evolution
[19,20,24,25,47]. It is well established that genotypes express
different patterns of plasticity in response to the immediate
environment (i.e. genotype–environment interaction [48]),
providing the substrate for adaptive evolution of develop-
mental plasticity [9,11,13,49–51]. Similarly, genotype-based
studies of transgenerational plasticity typically reveal genetic
variation for response to parental conditions (e.g. [52–57]).
However, there has been very little examination of genetic
variation for the relative contributions of parent- and off-
spring-environmental effects to offspring phenotype.

Finally, whether parental and current-environment effects
on gene expression patterns are similar or distinct in nature is
as yet an open question. While an environmental stress
experienced during the parental generation can lead to the
same trait changes as that stress does when encountered
directly by the offspring (e.g. [23,36,52,58,59]), it is not
known whether these transgenerational and immediate
phenotypic responses result from concordant differential
expression of the same genes. Although to our knowledge
this has not been directly examined, available data suggest
that inherited parental and immediate environmental influ-
ences may in fact yield rather different gene ontologies:
several studies show that unlike transcription changes due
to current environmental factors, conditions experienced by
the parent act on genes involved in regulation of transcription
and other RNA processes [3,60,61]. Sikkink et al. [62] tested
effects of heat stress in Caenorhabditis elegans and found that
gene expression changes due to parent versus offspring
stress were only weakly correlated and led to dissimilar
phenotypic effects.

To address these issues, we surveyed the transcriptome of
our study system using RNA-seq to investigate the relative
effects of parental and immediate (offspring) environment
for two key resource stresses in plants, light and soil moisture.
In order to describe the nature and diversity of the molecular
plant response systems that have evolved in natural habitats,
we studied field-sourced genotypes of Persicaria maculosa
Gray (= Polygonum (sensu latu) persicaria L.), an annual plant
found in natural populations in northeast North America
across a range of light and soil moisture conditions [63,64]. Pre-
vious studies of P. maculosa genotypes have documented
adaptive plasticity in response to both immediate and parental
levels of light and moisture (e.g. [44,45,58,65–68]). The species
is an excellent study system for testing plasticity because of its
mixed breeding system [69]. The combination of self- and
cross-fertilization provides naturally occurring genotypic
diversity due to outcrossing, yet allows for the generation of
highly inbred lines with no inbreeding depression [55].
Hence isogenic replicate plants of distinct P. maculosa lines
can be raised in alternative parental and developmental
conditions to characterize genotype-specific transgenerational
and immediate plastic responses.
2. Material and methods
(a) Study system
We studied 4 genetic lines of P. maculosa, an annual generalist
plant of allotetraploid origin [64]. To include diverse naturally
evolved genotypes, we collected achenes (single-seeded fruits)
from randomly chosen mature plants≥ 1 m apart in 3 established,
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Figure 1. Experimental design for light environment and soil moisture treat-
ments (separated by dotted vertical line indicating separate analyses). Arrows
A–E represent experimental combinations of parent and offspring treatments.
Plants in the high light/moist treatment (grey dotted boxes) provided a con-
trol comparison for both shade and dry plants in that generation. To assess
the effect of the parent light treatment on transcription, we compared the
shade-grown offspring of isogenic shade (A) versus high light (B) parent
plants. The effect of offspring light treatment was examined by comparing
offspring of high light parents when grown in a shade (B) versus high
light (C) offspring treatment. We assessed the effect of offspring soil moisture
treatment by comparing offspring of moist soil parent plants grown in a
moist soil (C) versus dry soil (D ) offspring treatment, and the effect of
parent soil moisture by comparing dry soil-grown offspring of isogenic
moist (D ) versus dry (E) parent plants. To maintain a feasible experimental
scale, we did not test the effects of alternative parental light and moisture
level in the corresponding non-stressful offspring treatment (i.e. offspring
high light and offspring moist soil).
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geographically separate field populations occupying the species’
typical range of habitats: MHF, Northfield, Massachusetts (MA):
open, moist pasture; NAT, Natick, MA: open, mesic cultivated
farmland; TP, Dover, MA: patchy, partly tree-shaded mesic field
(site details in [63]; two genotypes were used from the NAT popu-
lation which previous work has shown to be very genetically
diverse). This sample provides insight to the species’ genetic
diversity for plastic response but was not designed to test adaptive
population-level differences, which are beyond the scope of the
study. A random subset of field-collected achenes (one per ran-
domly chosen field parent) were propagated via self-fertilization
and single-seed descent for four generations under uniform favor-
able greenhouse conditions (full sun with field-capacity soil
moisture) to produce highly inbred experimental lines (hereafter
’genotypes’; see [48]).

(b) Parental generation
Achenes from each of four experimental genotypes (MHF1,
NAT1, NAT2, and TP2) were grown to reproductive maturity
in one of three randomly assigned greenhouse treatments: full
sun with moist soil (high light/moist), full sun with dry soil
(dry), or simulated shade with moist soil (shade). Note that the
parental high light/moisture treatment provided a stress-free
(control) comparison for both the parental dry and the parental
shade treatments (figure 1).

(c) Offspring generation
Mature achenes from one (self-fertilized) parent plant for each
genotype × parent treatment combination were germinated on
petri plates and transplanted into pots (3 replicate seedings per
pot). Experimental pots (4 genotypes × 5 [parent treatment × off-
spring treatment] combinations × 3 replicates = 60 pots) were
raised in a randomized complete block design in a Conviron
E2 growth chamber (Controlled Environments, Winnipeg,
Canada) in one of five parent treatment × offspring treatment
combinations—parent high light/moist × offspring high light/
moist; parent shade × offspring shade; parent dry × offspring
dry; parent high light/moist × offspring shade; parent high
light/moist × offspring dry (figure 1; note that this design is par-
tial rather than full factorial as the study does not aim to
comprehensively address the question of potential adaptive
match versus mismatch between parent and offspring stresses;
see [16]). Previous studies have confirmed that the experimental
‘dry’ and ‘shade’ stress treatments strongly reduce biomass and
reproduction in P. maculosa (e.g. [67,70]); field populations of
the species can encounter the full range of resource levels
tested [63]. 11–12 d post-transplant, leaf tissue from each replicate
pot of 3 seedlings was harvested, pooled and flash frozen for
RNA extraction (Promega SV Total RNA Isolation System Kit,
Promega Corporation, Madison, WI, USA).
(d) De novo transcriptome sequencing, assembly
and annotation

We submitted all 60 RNA samples to the National Genomics Infra-
structure (NGI) at Uppsala University, Uppsala, Sweden for RNA
sequencing. Libraries were prepared for each sample using an Illu-
mina TruSeq Stranded mRNA with Poly-A selection Library Prep
kit (Illumina, San Diego, CA, USA), which were subsequently
paired-end sequenced (2 × 150) on an Illumina NovaSeq 6000 plat-
form utilizing an S1 flow cell. In addition to the short read
sequences, we submitted a pool of 5 samples from genotype TP2
representing all 5 Parent/Offspring treatment combinations for
long-read sequencing following PacBio’s Iso-Seq protocol (Pacific
Biosciences of California Inc., Menlo Park, CA, USA) using a
PacBio Sequel sequencing platform at the NGI, Uppsala, Sweden.

Because no reference genome of P. maculosawas available, we
assembled the Illumina short read and PacBio long read data into
a de novo transcriptome using Trinity software (v. 2.8.4) [71] fol-
lowing the protocol in Feiner et al. [72], with minor changes made
to optimize for this data set (full assembly and analysis details in
electronic supplementary material). Trinity assembled 48,022
transcripts, representing 33,828 predicted genes. The N50 for
the transcriptome was 1,938 nucleotides (nt), with a median
contig length of 1,015 nt and a mean contig length of
1,322.12 nt. We annotated the transcriptome using Trinotate
(v. 3.2.0) [73], a software suite that makes use of a variety of
other annotation tools. In brief, TransDecoder (v. 5.5.0, https://
github.com/TransDecoder/TransDecoder) generated putative
amino acid sequences, and BLASTx and BLASTp (BLAST + v.
2.9.0) [74] were used to search nucleic and amino acid sequences
against the UniProtKB/Swiss-Prot database (retrieved 19 Decem-
ber 2019). A list of gene ontology (GO) terms for each transcript
was generated based on the BLAST matches.
(e) Transcript quantification and differential expression
analysis

Transcript abundances were quantified with kallisto quant using
default settings [75], and transcripts with low expression were
discarded from the analysis. We analysed for differentially
expressed transcripts in R (v. 3.6.2) [76] using the sleuth package
(v. 0.30.0) [77], fitting a generalized linear model for each tran-
script while accounting for variation in transcript abundances
across replicates.

To assess the effects of the two qualitatively different stressors,
we separately analysed parent and offspring shade versus high
light samples, and parent and offspring dry versus moist soil
samples. 21,383 transcripts were included in the light treatment
analyses after filtering for low-count transcripts, and 20,007
passed filtering for the soil moisture analyses. For each of the
two stress types, we tested for differential expression using the
model ∼genotype + parent environment + offspring environment +
genotype:parent environment + genotype:offspring environment +

https://github.com/TransDecoder/TransDecoder
https://github.com/TransDecoder/TransDecoder
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Figure 2. Euler diagrams showing the number of differentially expressed transcripts (DETs, q≤ 0.1) due to effect of parental environment, offspring environment
and the intersection (transcript changes common to both generations’ effects). Main effects ( pooled across genotypes) and effects on each genotype are shown for
(a) light treatment (shade versus high light) and (b) soil moisture treatment (dry versus moist soil). For each diagram in (a) and (b), numbers within the non-
overlapping segments represent DETs unique to either the parent or offspring effects, while the number in the intersection represents DETs that were significantly
differentially expressed due to both parent and offspring effects. Diagrams are scaled to an equivalent total area; individual circles within each diagram are scaled
relative to the total area based on the number of DETs due to each effect. In the case of light environment, more DETs were found due to offspring than parent
environment; the opposite was true for soil moisture. Note genotypic variation for the absolute and relative impact of parent and offspring effects of both light and
soil moisture treatment (visualized as variation in the relative size of the segments for each genotype-specific diagram). * = intersection greater than upper limit of
95% CI for a random overlap (see Material and methods; no overlaps were found to be below the CI lower limit).
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LF1+ LF2+ LF3 [+ LF4], where LF1, LF2, LF3 and LF4 are latent
factors constructed using the lfmm_ridge function from the lfmm
package (v. 1.0) [78] and LF4 was only used in the soil moisture
analyses. Differential expression was calculated via likelihood
ratio tests. Tests were corrected for false discovery via the
Benjamini–Hochberg method (q≤ 0.1) [77]. To examine the relative
breadth of response to the parent and offspring growth conditions,
we calculated the ratio of the number of parent effect DETs to the
number of offspring effect DETs both for the main effect and indi-
vidual genotypes for both the light and soil moisture comparisons.
In addition, we performed a co-expression network analysis using
WGCNA [79], of which the details and findings can be found in
the electronic supplementary material.

( f ) Transcript overlap analysis
Individual DETs that appeared in multiple sets of interest (i.e. the
overlap or intersection between any two or more given sets of
transcripts) were quantified and visualized using the R package
VennDiagram (v. 1.6.20) [80]. We calculated overlaps between
the sets of DETs resulting from parent and offspring effects of
either high light versus shade (hereafter ’light effect overlap’) or
dry versus moist soil (’soil moisture effect overlap’) for both the
main and individual genotype effects. Additionally, the four-
way overlap among the main effect DETs was quantified, as
well as four-way overlaps among sets of DETs for all genotypes
for each of the main effects. Significance for the amount of overlap
was calculated using a 95% confidence interval derived from a
10,000 iteration random sampling bootstrap analysis.

(g) Gene ontology enrichment analyses
We completed an exploratory GO term enrichment analysis of
the DETs using the topGO package for R (v. 2.38.1) [81] with
the de novo transcriptome as a background reference. Separate
enrichments were carried out for parent and offspring effects
for both the light and soil moisture analyses; these analyses
were limited to GO terms in the ‘biological process’ category.
We ran topGO using a Fisher’s exact test with the default algor-
ithm (a weighted elimination algorithm; see [82]), utilizing
transcript counts for each GO term to calculate enrichment
while accounting for the GO hierarchical structure, and we set
a significance threshold of weighted p≤ 0.05.
3. Results
(a) Differential expression due to light environment
Expression of certain transcripts changed as a result of both
current and parental shade versus high light, with the
number of DETs resulting from the main effect of offspring
light environment nearly 10-fold greater than the main
effect of the parent treatment (2,518 and 265 DETs, respect-
ively, giving a parent DET : offspring DET ratio [P : O] of
0.102; figure 2a, table 1). Within individual genotypes, we
observed DETs due to offspring light environment for all
genotypes and effects of parent light environment were
found in 3 of the 4 (figure 2a, table 1). Consistent with the
much larger main effect of current (offspring) than parent
light environment, we found more DETs due to offspring
than parent effects for every experimental genotype (P : O
DET ratio < 1; table 1). These patterns were reflected within
the co-expression network as well, with far more and larger
modules responding significantly to offspring effects than
parent effects, as well as considerable genotypic variation



Table 1. Quantity of significant DETs (q≤ 0.1) for main and genotype-specific effects of parent and offspring environment light and moisture treatments. A
ratio of parent : offspring effect DETs (P : O) > 1 represents a broader impact of parent treatment transcription relative to the impact of offspring treatment
within the given effect, while P : O < 1 indicates a broader effect of offspring treatment relative to parent treatment. All comparisons involving the impact of
high light versus shade had a P : O < 1. However, comparisons involving moist versus dry soil were more varied, with the main effect and genotypes MHF1 and
NAT2 with P : O > 1, genotype NAT 1 with P : O < 1, and TP2 with P : O≈ 1. DET counts for q≤ 0.05 and q≤ 0.01 can be found in electronic supplementary
material, table S1.

treatment
comparison

effect or
genotype

parent treatment
DETs

offspring treatment
DETs

parent DETs/offspring DETs
(P : O)

high light versus

shade

main effect 265 2518 0.102

MHF1 29 187 0.155

NAT1 69 1312 0.053

NAT2 2 1067 0.002

TP2 0 73 0.000

moist versus dry soil main effect 502 8 62.750

MHF1 1622 204 7.951

NAT1 55 601 0.092

NAT2 359 286 1.255

TP2 19 20 0.950
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within the vast majority of the modules (electronic
supplementary material, data S2).

(b) Differential expression due to soil moisture
conditions

As with light environment, transcripts were differentially
expressed as a result of both current and parental soil moisture
treatments. In this case, however, the relative impact of parent
and offspring effects varied strongly among genotypes
(figure 2b, table 1), and overall we found many more DETs
due to parent than offspring conditions (main effect of
parent dry versus moist soil = 502 DETs compared with
main effect of offspring dry versus moist soil = 8 DETs for a
P : O effect ratio of 62.750; table 1). Although both parent
and offspring soil moisture treatments led to DETs in all gen-
otypes, in two genotypes there were more DETs as a result of
parent relative to offspring moisture conditions (MHF1 P : O
effect ratio = 7.951; NAT2 P : O = 1.255), in one genotype there
were more DETs due to offspring than parent moisture con-
ditions (NAT1 P : O = 0.092), and in one genotype parent and
offspring conditions resulted in nearly identical numbers of
DETs (TP2 P : O = 0.950; figure 2b, table 1). Similar patterns
emerged within the co-expression network as well: parent
and offspring soil moisture conditions influenced a roughly
equivalent number of and similarly-sized modules, and geno-
typic variation was found in the majority of modules
(electronic supplementary material, data S2).

(c) Parent and offspring effect overlap analysis
We observed a significant intersection between parent and
offspring effect DETs for both light environment and soil
moisture conditions. With respect to the main effects of
light (see ’Transcript overlap analysis’ above), we identified
163 transcripts as being differentially expressed due to both
the parent and offspring light environment (figure 2a),
much higher than expected by chance based on bootstrapped
random sampling (CI 97.5 percentile = 40 DET overlap).
Greater than expected parent and offspring light effect
overlaps also occurred within two genotypes (MHF1: 7
DETs overlap, 97.5 percentile = 2 DET overlap expected by
chance; and NAT1: 35 DETs overlap, CI 97.5 percentile = 9
DET overlap expected by chance; figure 2a), and we saw no
light effect overlaps in the remaining two genotypes. With
respect to DET overlap among genotypes, there was no
four-way intersection among all sets of genotype-specific
DETs for parent light environment (electronic supplementary
material, figure S2a). In response to offspring light environment,
7 DETs changed in all four genotypes (97.5 percentile = 0 DET
overlap; electronic supplementary material, figure S2b),
including a heat shock protein (HSP70), a methyltransferase
(XPL1), a cellulose synthase (CESA2) and a phototropic-
response protein (NPY2).

When examining the effects of soil moisture conditions, we
found a significant overlap of two transcripts identified as
being differentially expressed due to both the parent and off-
spring main effects (CI 97.5 percentile = 1 DET overlap
expected by chance; figure 2b). We also detected a significant
overlap between parent and offspring soil moisture effect over-
lap within all genotypes (MHF1 91 DETs overlap, CI 97.5
percentile = 24 DET expected overlap; NAT1: 21 DETs overlap,
CI 97.5 percentile = 5 DET expected overlap; NAT2: 54 DETs
overlap, CI 97.5 percentile = 10 DET expected overlap; TP2: 1
DETs overlap, CI 97.5 percentile = 0 DET expected overlap;
figure 2b). We observed no four-way overlap among the geno-
types for either the parent or offspring soil moisture effects
(electronic supplementary material, figure S2c,d). Additionally,
there were no DETs shared among the four main effects
(parent light, offspring light, parent soil moisture and
offspring soil moisture effects; figure 3).

(d) Gene ontology enrichment analyses
Among the top enriched GO terms (i.e. significantly enriched
GO terms with the smallest p values) for gene expression
changes associated with parent shade versus high light
were terms primarily related to regulation of transcription
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and of developmental processes, and response to various
abiotic stimuli (electronic supplementary material, table
S2a). The top GO terms for effects of offspring light environ-
ment were more varied, with terms relating to response to
direct stimuli including light and heat, chloroplast localiz-
ation, morphogenesis, and other developmental and
metabolic processes (electronic supplementary material,
table S2b). Interestingly, similar to the parent light enrich-
ment, GO terms associated with parental effects of dry
versus moist soil consisted largely of terms involved in regu-
lation of transcription, developmental processes and some
metabolic processes (electronic supplementary material,
table S2c). Only eight DETs were associated with the main
effect of offspring soil moisture conditions. Of those, three
were annotated: AT4G21870, a heat shock protein; RHA1A,
a zinc finger protein; and AT3G16370, a lipase/acylhydrolase.
4. Discussion
Despite intense interest in both immediate and inherited
environmental influences on phenotypic expression, few
data are available regarding the potential effects of parental
environments on individual animal or plant transcriptomes.
Hence, although several studies have provided qualitative
insight by testing the significance of both parent- and off-
spring-environment effects on phenotypes within the same
study organism (reviewed by [16,83]), explicit comparisons
of the relative transcriptome impact of these alternative
sources of environmental influence are lacking. We have
found only one published study that allows a direct quanti-
tative comparison of parental and immediate transcriptome
effects. Shama et al. [3] tested the effects of controlled
immediate, maternal and grandmaternal thermal environ-
ments on transcriptome-wide expression changes in a
pooled sample of pectoral fin muscle tissue from field-
based three-spined stickleback (G. aculeatus) families. Interest-
ingly, that study found that maternal temperature
environment had the greatest impact on gene expression,
while the immediate environment had the least impact.

Our study of naturally occurring P. maculosa genotypes
raised in contrasting offspring or parental light and moisture
levels revealed a more complex, context-dependent interplay
of environmental influences across generations: we found no
consistent pattern regarding the relative impact of parental
and current environmental effects on transcription. Instead,
although the developing individual’s current environment
generally altered expression of a greater number of DETs
than did conditions during its parent’s generation, depending
on the type of environmental stress and the genotype the
opposite also occurred—in certain cases, parental environ-
ment led to more DETs than immediate conditions. These
patterns of transcriptome change are consistent with patterns
of adaptive plasticity for developmental phenotypes in the
same and closely related P. maculosa genotypes including
total biomass, mean and specific leaf area, whole-plant leaf
area, and root extension (details in electronic supplementary
material, box S1) [36,58].
(a) The relative impact of parental and offspring
environment on the number of DETs differed for
the two environmental stresses tested

Although plant plasticity in response to immediate light and
moisture conditions is comparatively well studied, including
at the transcriptome level (see [11]), little is known regarding
the effects of parental resource stresses on offspring gene
expression. Published cases include Zheng et al. [84], who
identified several transcripts that were differentially
expressed over six successive generations of drought in
Oryza sativa, and Liu et al. [85], who documented parental
drought-induced changes in miRNA and mRNA expression
in Triticum turgidum. Our study revealed that the architecture
of transcriptional change in response to parental versus cur-
rent stress differed for two major plant resources. In the
case of ample versus limited light, far more transcripts chan-
ged expression level in response to developmental conditions
than parental treatment. This pattern was consistent for every
genotype in the study. In contrast, with respect to moist soil
versus drought stress, the main effect of parental environ-
ment was far greater than that of the immediate, offspring
treatment; however, this relationship was far less consistent
across genotypes (as with any analysis of variance, a signifi-
cant main factor effect can result from either many subtle
changes in transcript number across several genotypes, or
from a few transcripts that change number dramatically in
certain genotypes; see next section). Similar patterns to
these were also observed within co-expression networks,
with more modules affected of the offspring light than by
parent light environment but relatively equal contributions
from offspring and parent soil moisture conditions.

Environmental conditions including resource availability
can directly enter gene regulatory pathways as external cues
are transduced to cellular components via metabolic feedbacks,
hormone translocation and protein cascades (references in
[1,2,49,86]). Through these mechanisms, immediate levels of
both light and moisture strongly influence the phenotypes of
developing plants, leading to functionally appropriate adjust-
ments to resource-collecting tissues (e.g. [26,34,35,38,67,87,
88]). Broad changes in the transcriptome may also be induced
by immediate levels of both light [30,33,89] and soil moisture
[41,90], though their phenotypic consequences are often
unknown. Parental levels of both factors have also been
shown to transgenerationally influence plant phenotypes



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20230824

7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 S

ep
te

m
be

r 
20

23
 

[37,91,92], including in P. maculosa [36,44,45,58]; in this species,
DNA methylation changes plus stable or increased seed provi-
sioning jointly mediate effects of parental light and moisture
stress on offspring [36,44,55].

While it is often assumed that the immediate environment
will have a larger effect than the parental environment on an
individual’s phenotype [16,18–20], theory predicts that
whether the parental or offspring environment has a stronger
impact will reflect how reliably each one predicts the selective
environment that individual will encounter: strong transge-
nerational plasticity is likely to evolve when the parental
environment is a better indicator than the current environ-
ment and greater within-generation plasticity when the
current environment is a better predictor [19,20,24,25]. In
the case of ample light versus shade, the consistently greater
impact of the developmental environment may indicate a
primary predictive role of current light conditions.

In P. maculosa habitats, leaves and branches of herbaceous
neighbors as well as larger woody plants create a fine-grained
mosaic of sunny and shaded microsites into which offspring
(as seeds) are passively dispersed (generally 0.5–1 m from the
mother plant; R. Waterman, unpublished data). Because
shade cast by trees and perennials remains spatially constant
over many generations while the herbaceous community
changes every season, the parent-to-offspring autocorrelation
of sunny and shaded microsites at the individual plant scale
is moderate but noisy (e.g. Pearson correlation of 0.57 from
2019 to 2020 [93]). This modest environmental autocorrela-
tion combined with unreliable cues due to within- and
across-generation variability may only weakly favour persist-
ent transgenerational effects [94] despite the limited dispersal
distance in this system (see [25]). We speculate that by several
weeks into development (the stage at which RNA was
extracted in the present experiment), a plant’s current light
environment may more strongly signal its future growth con-
ditions such that relatively greater reliance on immediate cues
would be expected to evolve [25,47]; further investigation is
required to confirm this speculation, including testing the
effects of parental shade stress on development of unstressed
offspring. By contrast, moisture conditions in the field reflect
site soil composition and topography, resulting in somewhat
larger spatial patches likely to remain consistently wet or dry
relative to each other from year to year but varying in concert
due to seasonal weather. Since within-generation precipi-
tation generates unreliable immediate cues, and because an
anticipatory signal of drought stress from a parent P. maculosa
plant boosts offspring survival in dry soil [45], this system
may have evolved to generate such a signal [94] associated
with substantial transcriptome changes. We note that to
comprehensively address the extent to which responses are
adaptive, further research using fully factorial designs may
add valuable insights [16]. Additionally, we outline three
general caveats which apply to this and other RNA-seq
datasets in electronic supplementary material, box S2.
(b) The relative impact and transcriptional effects of
immediate and parental resource stress varied
among genotypes

The effects of contrasting light and moisture conditions during
development on transcription (i.e. number of DETs due to a
given offspring treatment difference) varied considerably
among the four experimental P. maculosa genotypes. Genotypic
differences in patterns of developmental response to immediate
environmental conditions (genotype by environment inter-
action variance [48]) are a prevalent feature of natural systems
(reviewed by [51]; e.g. [14,95–99]). It is this aspect of genetic
variation that provides the potential for patterns of develop-
mental plasticity to evolve under natural selection [9,12,13,50].
While innumerable studies document such G×E for mor-
phology, life-history, and other plant and animal traits, there
is also a growing literature showing genotypic differences for
immediate environmental effects at the transcriptome level
that (presumably) underlies changes to developmental pheno-
types (reviewed in [100]; e.g. [11,101–103]). Our findings add
further evidence of genotypic variation for transcriptional
response patterns to developmental conditions. Indeed, G×E
was observed in the co-expression networks for both environ-
mental stresses (electronic supplementary material).

To date, the literature documenting genotypic variation for
parental environment effects is less extensive. Such genotype ×
parental environment interaction effects on phenotypes have
been reported for traits including vertebrate body size [104]
and disease risk [105]; invertebrate parasite resistance [106];
and plant life-history [46,107,108], defense structures [52,60],
biomass allocation, and morphology [44,55,66]. Our data
revealed pronounced variation among P. maculosa genotypes
for the number of DETs induced by parental light and moist-
ure stress as well as G× parent E interaction effects in the co-
expression networks, confirming the general observation that
genotypes differ in the environmental effects transmitted
from parents to offspring by revealing such variation at the
transcriptome level. These results are consistent with previous
studies documenting significant genotype × parental environ-
ment interaction variance within populations of this species,
in response to both parental light levels [36,66] and parental
soil moisture [45].

Our data also provide new insights with respect to genoty-
pic variation for environmental response: genotypes differed in
the relative impact of parental and immediate conditions on the
transcriptome. In the case of light environment treatments, all
genotypes showed a greater offspring than parental effect on
transcription, but the ratio of these effects varied considerably
(from 0.002 to 0.155). With respect to soil moisture, depending
on genotype the relative effect of parental conditions varied
from less than to much greater than the effect of the individual’s
immediate environment (from 0.092 to 7.951). Since our
experimental P. maculosa genotypes were field-sourced, they
represent naturally occurring variation for the degree to
which parental versus immediate conditions influence offspring
transcriptomes and presumably the resulting phenotypes.

Genotypic variation in natural populations may thus
include not just different levels of responsiveness to immedi-
ate and parental conditions, but—because parental and
offspring effects vary independently of each other among
genotypes—variation in the relationship between these two
aspects of environmental response. As a result, this relation-
ship can potentially evolve under natural selection [20,24].
Several simulation models have examined this issue by vary-
ing the relative phenotypic impact of parental and immediate
environments among genotypes [19,25,47]. In these models,
as noted in the preceding section, variation in the relative
reliability of parental and current environmental ‘cues’ for
predicting an organism’s selective conditions led to adaptive
evolution of their relative impact on individual response.
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Empirical tests of these models require data on the spatial dis-
tribution and cross-generational autocorrelation of alternative
environments in naturally evolving systems. In the case of
fine-grained environmental variables such as light and
shade, resolving these patterns is particularly challenging.
Available data (summarized in the previous section) indicate
that cross-generation microsite correlations for both light and
soil moisture are highly variable within field populations of
this colonizing species, providing a generally noisy target
for natural selection. This may allow the persistence of
genetic variation which can then contribute to adaptive evol-
ution of the relative impact of transgenerational effects—if a
site becomes temporally more consistently moist or dry, for
instance, or if a new population is founded in a location
with either very strong or very weak cross-generation
environmental correlations.

(c) Parental and offspring effects led to broadly
different transcriptome changes

We found surprisingly little overlap in the transcriptional
effects of parental and immediate levels of a given resource
in terms of individual transcripts. Additionally, functional cat-
egories for the effects of offspring light and soil moisture
conditions were almost completely distinct from each other
as well as from their respective parent effects. GO enrichments
for offspring light DETs were consistent with functional
genomics studies showing effects of a plant’s current light con-
ditions on light response gene networks [29,30] and genes
linked to regulation of, and response to, plant growth hor-
mones [32,33]. The immediate soil moisture environment
transcript annotations also agreed with the literature: ROS
stress is known to accompany drought stress due to increased
photorespiration [109], and heat shock proteins have been
linked to drought response in numerous systems [110–112].
These studies indicate that a plant’s transcriptional response
to its current conditions may largely reflect expression changes
in genes related to a specific environmental stress.

In contrast, GO terms for regulation of RNA processes
and transcription were among the top enriched terms in
response to both parental light and parental moisture. Note
that despite similar ontologies, only a small number of
DETs changed in response to both parental environmental
factors (figure 3), suggesting that different genes are likely
involved in each transgenerational regulatory response. No
terms relating to these transcriptional processes were ident-
ified among top enriched in either offspring enrichment
analysis (electronic supplementary material, table S2). Differ-
ential expression of transcription-related genes has been
shown to be specifically associated with parental effects in
other transgenerational animal and plant studies, including
maternal thermal environment effects in stickleback [3],
parental CO2 concentration effects in the reef fish Acantho-
chromis polyacanthus [61], and effects of simulated herbivory
on parental Mimulus plants [60]. That parental environment
effects related to RNA processes and transcriptional regu-
lation have been observed in such diverse cases suggests
that the developmental influence of parental environment
may be mediated in part via epigenetic regulation of
transcripts which then alter downstream gene expression.

In P. maculosa, parental and immediate shade influence
seedling development in similar ways [36,65]; the same is
true for parental and immediate drought stress [45,58,68].
Yet at the level of transcription, the present study found lar-
gely dissimilar parental and offspring effect GO enrichments
as well as a generally low overlap of DETs that were associated
with both parent and immediate levels of either resource
stress. This indicates that even when transgenerational and
within-generation plasticity yield similar phenotypic out-
comes, they may do so through distinct changes in gene
expression; instead, parental effects may act on genes that par-
ticipate in cellular regulatory systems which then influence
downstream expression of transcripts that produce said phe-
notypic response. Although these downstream expression
changes may be subtle and hence require greater statistical
power to be individually detected, they may collectively con-
tribute to significant trait change. To evaluate the extent to
which parental and immediate environments may differently
participate in developmental phenotypes in natural systems,
fully factorial transcriptomics studies with very high replica-
tion may be necessary to provide sufficient power to
discover such subtle expression changes.
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